Extensions 1→N→G→Q→1 with N=C2 and Q=C23.7D4

Direct product G=N×Q with N=C2 and Q=C23.7D4
dρLabelID
C2×C23.7D432C2xC2^3.7D4128,1756


Non-split extensions G=N.Q with N=C2 and Q=C23.7D4
extensionφ:Q→Aut NdρLabelID
C2.1(C23.7D4) = 2+ 1+42C4central extension (φ=1)32C2.1(C2^3.7D4)128,522
C2.2(C23.7D4) = C24.22D4central extension (φ=1)32C2.2(C2^3.7D4)128,599
C2.3(C23.7D4) = C24.26D4central extension (φ=1)32C2.3(C2^3.7D4)128,622
C2.4(C23.7D4) = C23.5D8central stem extension (φ=1)32C2.4(C2^3.7D4)128,339
C2.5(C23.7D4) = C24.14D4central stem extension (φ=1)32C2.5(C2^3.7D4)128,340
C2.6(C23.7D4) = C4⋊C4.12D4central stem extension (φ=1)32C2.6(C2^3.7D4)128,341
C2.7(C23.7D4) = (C2×C4).5D8central stem extension (φ=1)32C2.7(C2^3.7D4)128,342
C2.8(C23.7D4) = (C2×C4).SD16central stem extension (φ=1)32C2.8(C2^3.7D4)128,343
C2.9(C23.7D4) = C24.15D4central stem extension (φ=1)32C2.9(C2^3.7D4)128,344
C2.10(C23.7D4) = C24.16D4central stem extension (φ=1)32C2.10(C2^3.7D4)128,345
C2.11(C23.7D4) = C24.17D4central stem extension (φ=1)32C2.11(C2^3.7D4)128,346
C2.12(C23.7D4) = C4⋊C4.18D4central stem extension (φ=1)32C2.12(C2^3.7D4)128,347
C2.13(C23.7D4) = C4⋊C4.19D4central stem extension (φ=1)32C2.13(C2^3.7D4)128,348
C2.14(C23.7D4) = C4⋊C4.20D4central stem extension (φ=1)32C2.14(C2^3.7D4)128,349
C2.15(C23.7D4) = C24.18D4central stem extension (φ=1)32C2.15(C2^3.7D4)128,350
C2.16(C23.7D4) = C24.31D4central stem extension (φ=1)32C2.16(C2^3.7D4)128,754
C2.17(C23.7D4) = C24.180C23central stem extension (φ=1)32C2.17(C2^3.7D4)128,762
C2.18(C23.7D4) = C24.33D4central stem extension (φ=1)32C2.18(C2^3.7D4)128,776
C2.19(C23.7D4) = C24.182C23central stem extension (φ=1)32C2.19(C2^3.7D4)128,794

׿
×
𝔽